

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

CLASS 8

SUBJECT : Algebra and Geometry Marks:15

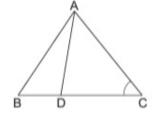
Work sheet 10 CONGRUENCY AND INEQUALITIES IN TRIANGLES

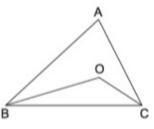
Date:17.4.2020

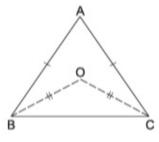
Answer all the following questions $(1 \times 15 = 15)$

MULTIPLE-CHOICE QUESTIONS (MCQ)

Choose the correct answer in each of the following:


 Which of the following is not a criterion for congruence of triangles? (c) ASA (a) SSA (b) SAS (d) SSS 2. If *AB* = *QR*, *BC* = *RP* and *CA* = *PQ* then which of the following holds? (a) $\triangle ABC \cong \triangle PQR$ (b) $\triangle CBA \cong \triangle PQR$ (c) $\triangle CAB \cong \triangle PQR$ (d) $\triangle BCA \cong \triangle POR$ 3. If $\triangle ABC \cong \triangle PQR$ then which of the following is not true? (a) BC = PQ(b) AC = PR(c) BC = OR(d) AB = PQ4. In $\triangle ABC$, AB = AC and $\angle B = 50^{\circ}$. Then, $\angle A = ?$ (a) 40° (b) 50° (c) 80° (d) 130° 5. In $\triangle ABC$, BC = AB and $\angle B = 80^\circ$. Then, $\angle A = ?$ (b) 40° (a) 50° (c) 100° (d) 80° 6. In $\triangle ABC$, $\angle C = \angle A$, BC = 4 cm and AC = 5 cm. Then, AB = ?(a) 4 cm (b) 5 cm (c) 8 cm (d) 2.5 cm 7. Two sides of a triangle are of length 4 cm and 2.5 cm. The length of the third side of the triangle cannot be (b) 6.5 cm (c) 5.5 cm (d) 6.3 cm (a) 6 cm


- 8. In $\triangle ABC$, if $\angle C > \angle B$, then
 - (a) BC > AC (b) AB > AC (c) AB < AC (d) BC < AC
- 9. It is given that $\triangle ABC \cong \triangle FDE$ in which AB = 5 cm, $\angle B = 40^\circ$, $\angle A = 80^\circ$ and FD = 5 cm. Then, which of the following is true?


(a) $\angle D = 60^{\circ}$ (b) $\angle E = 60^{\circ}$ (c) $\angle F = 60^{\circ}$ (d) $\angle D = 80^{\circ}$

10. In $\triangle ABC$, $\angle A = 40^{\circ}$ and $\angle B = 60^{\circ}$. Then, the longest side of $\triangle ABC$ is

- (a) *BC* (b) *AC*
- (c) *AB* (d) cannot be determined
- **11.** In the given figure, *AB* > *AC*. Then, which of the following is true?
 - (a) AB < AD
 - (b) AB = AD
 - (c) AB > AD
 - (d) Cannot be determined
- **12.** In the given figure, AB > AC. If BO and CO are the bisectors of $\angle B$ and $\angle C$ respectively then
 - (a) OB = OC
 - (b) OB > OC
 - (c) OB < OC
- **13.** In the given figure, AB = AC and OB = OC. Then, $\angle ABO : \angle ACO = ?$
 - (a) 1:1
 - (b) 2:1
 - (c) 1:2
 - (d) none of these

- **14.** If the altitudes from two vertices of a triangle to the opposite sides are equal then the triangle is
 - (a) equilateral (b) isosceles
 - (c) scalene (d) right angled
- **15.** In $\triangle ABC$ and $\triangle DEF$, it is given that AB = DE and BC = EF. In order that $\triangle ABC \cong \triangle DEF$, we must have
 - (a) $\angle A = \angle D$ (b) $\angle B = \angle E$
- (c) $\angle C = \angle F$ (d) none of these Indranil Ghosh