

ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

CLASS 8

SUBJECT :Algebra and Geometry Marks:15 Work sheet 11 Theorem 1 and Theorem 2(Pamphlet)

Date:18.4.2020

Answer all the following questions $(1 \times 15 = 15)$

MULTIPLE-CHOICE QUESTIONS (MCQ)

Choose the correct answer in each of the following questions:

- **1.** In a $\triangle ABC$, if $3 \angle A = 4 \angle B = 6 \angle C$ then A : B : C = ?
 - (a) 3:4:6 (b) 4:3:2 (c) 2:3:4 (d) 6:4:3

4. Side *BC* of $\triangle ABC$ has been produced to *D* on left and to *E* on right-hand side of *BC* such that $\angle ABD = 125^{\circ}$ and $\angle ACE = 130^{\circ}$. Then, $\angle A = ?$

(x + 10)°

С

D

8. In the given figure, two rays *BD* and *CE* intersect at a point *A*. The side *BC* of $\triangle ABC$ have been produced on both sides to points *F* and *G* respectively. If $\angle ABF = x^\circ$, $\angle ACG = y^\circ$ and $\angle DAE = z^\circ$ then z = ?

(a) x+y-180 (b) x+y+180 (c) 180-(x+y) (d) x+y+360°
9. In the given figure, lines *AB* and *CD* intersect at a point *O*. The sides *CA* and *OB* have been produced to *E* and *F* respectively such that ∠OAE = x° and ∠DBF = y°.

If $\angle OCA = 80^\circ$, $\angle COA = 40^\circ$ and $\angle BDO = 70^\circ$ then $x^\circ + y^\circ = ?$

(a) 190° (b) 230° (c) 210° (d) 270°

в

10. In a $\triangle ABC$, it is given that $\angle A : \angle B : \angle C = 3 : 2 : 1$ and $\angle ACD = 90^\circ$. If *BC* is produced to *E* then $\angle ECD = ?$

- (a) 60°
- (b) 50°
- (c) 40°
- (d) 25°

11. In the given figure, *BO* and *CO* are the bisectors of $\angle B$ and $\angle C$ respectively. If $\angle A = 50^{\circ}$ then $\angle BOC = ?$

- (a) 130° (b) 100°
- (c) 115° (d) 120°

D

12

12. In the given figure, side *BC* of $\triangle ABC$ has been produced to a point *D*. If $\angle A = 3y^{\circ}$, 3v $\angle B = x^{\circ}$, $\angle C = 5y^{\circ}$ and $\angle CBD = 7y^{\circ}$. Then, the value of *x* is 7y° 5y (a) 60 (b) 50 B (d) 35 (c) 45

13. If one angle of a triangle is greater than the sum of the other two, then the triangle isangled

(b)right (a) obtuse (d)none of these (c) acute

14.

Calculate the value of x in the given figure.

(a) 130° (c) 120°

(d) 180°

In the given figure, $AM \perp BC$ and AN is the bisector of $\angle A$. If $\angle ABC = 70^{\circ}$ and $\angle ACB = 20^{\circ}$, find $\angle MAN$.

Indranil Ghosh