ST. LAWRENCE HIGH SCHOOL

A JESUIT CHRISTIAN MINORITY INSTITUTION

CLASS 8

Work sheet 11
Theorem 1 and Theorem 2(Pamphlet)

Answer all the following questions($1 \times 15=15$)

MULTIPLE-CHOICE QUESTIONS (MCQ)

Choose the correct answer in each of the following questions:

1. In a $\triangle A B C$, if $3 \angle A=4 \angle B=6 \angle C$ then $A: B: C=$?
(a) $3: 4: 6$
(b) $4: 3: 2$
(c) $2: 3: 4$
(d) $6: 4: 3$
2. In a $\triangle A B C$, if $\angle A-\angle B=42^{\circ}$ and $\angle B-\angle C=21^{\circ}$ then $\angle B=$?
(a) 32°
(b) 63°
(c) 53°
(d) 95°
3. In a $\triangle A B C$, side $B C$ is produced to D. If $\angle A B C=50^{\circ}$ and $\angle A C D=110^{\circ}$ then $\angle A=$?
(a) 160°
(b) 60°
(c) 80°
(d) 30°

4. Side $B C$ of $\triangle A B C$ has been produced to D on left and to E on right-hand side of $B C$ such that $\angle A B D=125^{\circ}$ and $\angle A C E=130^{\circ}$. Then, $\angle A=$?

(a) 50°
(b) 55°
(c) 65°
(d) 75°
5. In the given figure, the sides $C B$ and $B A$ of $\triangle A B C$ have been produced to D and E respectively such that $\angle A B D=110^{\circ}$ and $\angle C A E=135^{\circ}$. Then, $\angle A C B=$?
(a) 65°
(b) 45°
(c) 55°
(d) 35°

6. The sides $B C, C A$ and $A B$ of $\triangle A B C$ have been produced to D, E and F respectively. $\angle B A E+\angle C B F+\angle A C D=$?
(a) 240°
(b) 300°
(c) 320°
(d) 360°

7. In the given figure, $E A D \perp B C D$. Ray $F A C$ cuts ray $E A D$ at a point A such that $\angle E A F=30^{\circ}$. Also, in $\triangle B A C, \angle B A C=x^{\circ}$ and $\angle A B C=(x+10)^{\circ}$. Then, the value of x is
(a) 20
(b) 25
(c) 30
(d) 35

8. In the given figure, two rays $B D$ and $C E$ intersect at a point A. The side $B C$ of $\triangle A B C$ have been produced on both sides to points F and G respectively. If $\angle A B F=x^{\circ}, \angle A C G=y^{\circ}$ and $\angle D A E=z^{\circ}$ then $z=$?

(a) $x+y-180$
(b) $x+y+180$
(c) $180-(x+y)$
(d) $x+y+360^{\circ}$
9. In the given figure, lines $A B$ and $C D$ intersect at a point O. The sides $C A$ and $O B$ have been produced to E and F respectively such that $\angle O A E=x^{\circ}$ and $\angle D B F=y^{\circ}$.

If $\angle O C A=80^{\circ}, \angle C O A=40^{\circ}$ and $\angle B D O=70^{\circ}$ then $x^{\circ}+y^{\circ}=$?
(a) 190°
(b) 230°
(c) 210°
(d) 270°
10. In a $\triangle A B C$, it is given that $\angle A: \angle B: \angle C=3: 2: 1$ and $\angle A C D=90^{\circ}$. If $B C$ is produced to E then $\angle E C D=$?
(a) 60°
(b) 50°

(c) 40°
(d) 25°
11. In the given figure, $B O$ and $C O$ are the bisectors of $\angle B$ and $\angle C$ respectively. If $\angle A=50^{\circ}$ then $\angle B O C=$?
(a) 130°
(b) 100°
(c) 115°
(d) 120°

12. In the given figure, side $B C$ of $\triangle A B C$ has been produced to a point D. If $\angle A=3 y^{\circ}$, $\angle B=x^{\circ}, \angle C=5 y^{\circ}$ and $\angle C B D=7 y^{\circ}$. Then, the value of x is
(a) 60
(b) 50
(c) 45
(d) 35

13. If one angle of a triangle is greater than the sum of the other two, then the triangle isangled
(a) obtuse
(b)right
(c) acute
(d)none of these
14.

Calculate the value of x in the given figure.

(a) 130°
(b) 90°
(c) 120°
(d) 180°
15.

In the given figure, $A M \perp B C$ and $A N$ is the bisector of $\angle A$. If $\angle A B C=70^{\circ}$ and $\angle A C B=20^{\circ}$, find $\angle M A N$.

(a) 25°
(b) 65°
(c) 75°
(d) 125°

