

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

STUDY MATERIAL-7

SUBJECT – MATHEMATICS

Pre-test

Chapter: Relations & Functions

Topic: Relations

Class: XII

Date: 08.06.2020

UNIT-I: RELATIONS AND FUNCTIONS (WBCHSE SYLLABUS).

1. Relations and Functions :

Types of relations : reflexive, symmetric, transitive and equivalence relations. One to one and onto functions, composite functions, inverse of a function. Binary operations.

2. Inverse Trigonometric Functions :

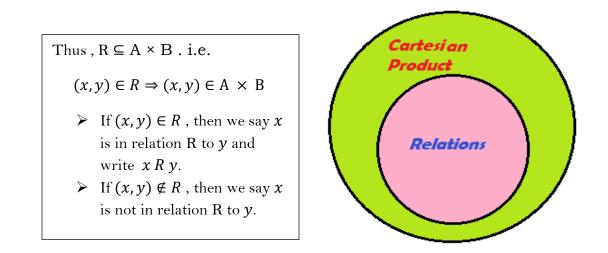
Definition, range, domain, principal value branches. Graphs of inverse trigonometric functions. Elementary properties of inverse trigonometric functions.

Total Marks : 08

RELATIONS

 Definition of Relation :- A relation R from a non-empty set A to a non-empty set B is a subset of the cartesian product A × B. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in A × B.

The second element is called the image of the first element.



2. **Relation on a set :-** A relation R from a non-empty set A to itself i.e. a subset of A × A is called a relation on set A .

3. Domain , Range & Co-domain of a relation :-

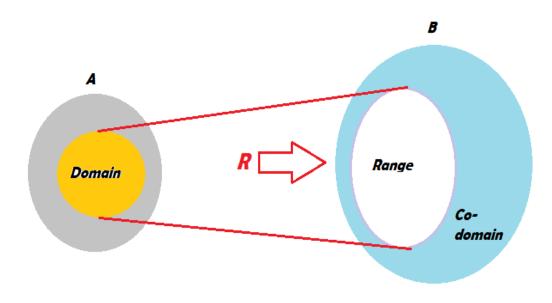
A) Domain :- The set of all first elements of the ordered pairs in a relation R from a set A to a set B is called the domain of the relation R.

i.e.
$$Dom.(R) = \{x : (x, y) \in R\}$$

B) Range : - The set of all second elements of the ordered pairs in a relation R from a set A to a set B is called the range of the relation R.

i.e. Range(R) =
$$\{y : (x, y) \in R\}$$

- **C)** Co-domain :- The whole set B in a relation R from a set A to a set B is called the co-domain of the relation R.
 - \triangleright We can easily see that , Range(R) ⊆ Co-domain(R) .



4. Types of relations :-

A) Reflexive relation – Let, A be a non-empty set. A relation R on A is reflexive relation if every element of A is related to itself.

i.e. R is reflexive if $(a, a) \in R$, $\forall a \in A$.

B) Symmetric relation – Let, A be a non-empty set. A relation R on A is symmetric relation if $(a, b) \in R \Rightarrow (b, a) \in R$, $\forall a, b \in A$.

i.e. R is symmetric if a R b \Rightarrow b R a ; \forall a, b \in A.

C) Transitive relation – Let, A be a non-empty set. A relation R on A is transitive relation if $(a, b) \in R \& (b, c) \in R \Rightarrow (a, c) \in R$, $\forall a, b, c \in A$.

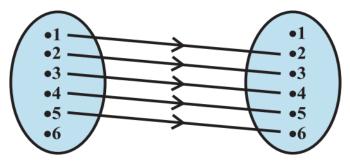
i.e. R is symmetric if a R b & b R c \Rightarrow a R c ; \forall a, b, c \in A.

D) Equivalence relation – Let, A be a non-empty set. A relation R on A is equivalence relation if R is Reflexive, Symmetric and Transitive.

5. Some important theorems on equivalence relation :-

- i. The union of two equivalence relations on a set is not necessarily an equivalence relation on that set.
 - ✓ Take A={1, 2, 3} and two relations R and S on A defined as follows : R = {(1,1), (2,2), (3,3), (1,2), (2,1)} and S = {(1,1), (2,2), (3,3), (2,3), (3,2)}
- ii. The intersection of two equivalence relations on a set is an equivalence relation on that set.
- iii. If R is an equivalence relation on a set A , then the inverse relation R^{-1} is also an equivalence relation on that set.
- 6. Some problems on relations : -
 - Example 1 : Let A = {1, 2, 3, 4, 5, 6}. Define a relation R from A to A by R = {(x, y) : y = x + 1}. Write down the domain, codomain and range of R.

Solution : By the definition of the relation, $R = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}$. We can see that the domain = $\{1, 2, 3, 4, 5,\}$ Similarly, the range = $\{2, 3, 4, 5, 6\}$ and the codomain = $\{1, 2, 3, 4, 5, 6\}$.



Example 2: If R is a relation on N defined as $R = \{(x, y) : x + 3y = 12 \text{ and } x, y \in \mathbb{N}\}$. Find the domain and range of R. [HS 2017]

Solution : $R = \{(3,3), (6,2), (9,1)\}$. Hence, $Dom(R) = \{3,6,9\}$ and $Range(R) = \{3,2,1\}$.

Example 3 : If R is a relation on N defined as $R = \{(x, y) : 2x + y = 41 \text{ and } x, y \in \mathbb{N}\}$. Show that R is neither reflexive nor transitive nor symmetric. [HS 2018]

Solution : 3 ∈ N but, (3,3) ∉ N. Hence , not reflexive.
(20,1) ∈ R but (1,20) ∉ R. Hence , not symmetric.
(12,17) ∈ R & (17,7) ∈ R but, (12, 7) ∉ R. Hence not transitive.

Example 4 : If R is a relation on \mathbb{Z} defined as $R = \{(x, y) \in R \Rightarrow (x - y) \text{ is divisible by } n\}$. Prove that R is an equivalence relation on \mathbb{Z} .

Solution :

- i. $\forall a \in \mathbb{Z}, a a = 0 \text{ and } 0 \text{ is divisible by } n \text{ as } 0 = 0 \times n.$ Hence, $(a, a) \in R, \forall a \in \mathbb{Z}$. Hence, R is reflexive on \mathbb{Z} .
- ii. Let, $(a, b) \in R$. $\therefore (a b)$ is divisible by n. i.e. (a - b) = nk, $k \in \mathbb{Z}$. $\Rightarrow (b - a) = -nk = n(-k)$. Now, as $k \in \mathbb{Z}$, $(-k) \in \mathbb{Z}$ $\therefore (b - a)$ is also divisible by $n \Rightarrow (b, a) \in R$. Hence, R is symmetric on \mathbb{Z} .
- iii. Let, $(a, b) \in R \& (b, c) \in R$. ∴ (a b) is divisible by n and (b c) is divisible by n. ∴ (a - b) + (b - c) = (a - c) is divisible by n. {As, a, b, c are in \mathbb{Z} }. ⇒ $(a, c) \in R$. Hence, R is transitive on \mathbb{Z} .

Hence, R is an equivalence relation on \mathbb{Z} . (proved)

Prepared by -Mr. SUKUMAR MANDAL (SkM)