ST. LAWRENCE HIGH SCHOOL

CLASS 8

SUBJECT :Algebra and Geometry
Marks :15

Work sheet 19 answer key

SPECIAL TYPES OF QUADRILATERAL

Date:20.3.2021

Answer all the following questions($1 \times 15=15$)

1. In the given figure, $A B C D$ is a parallelogram, the values of x and y respectively are
(a) $1 \mathrm{~cm}, 1 \mathrm{~cm}$
(b) $2 \mathrm{~cm}, 1 \mathrm{~cm}$
(c) $1 \mathrm{~cm}, 2 \mathrm{~cm}$
(d) $2 \mathrm{~cm}, 2 \mathrm{~cm}$

Solution:

$$
\begin{aligned}
& \text { In the given figure, } A B C D \text { is a parallelogram } \\
& \because \text { Diagonals of a parallelogram bisect each other } \\
& \therefore A O=O C \text { and } B O=O D \\
& \therefore 6=5 x+1 \\
& \Rightarrow 5 x=6-1=5 \\
& \Rightarrow x=\frac{5}{5} \\
& \text { and } y+3=4 \\
& \Rightarrow y=4-3=1 \\
& \therefore x=1, y=4 \text { (a) }
\end{aligned}
$$

2. In the given figure, $A B C D$ is a parallelogram, the values of x, y and z respectively are
(a) $60^{\circ}, 60^{\circ}, 70^{\circ}$
(b) $60^{\circ}, 70^{\circ}, 60^{\circ}$
(c) $70^{\circ}, 60^{\circ}, 60^{\circ}$
(d) none of these

Solution:

In the given figure,

$A B C D$ is a parallelogram, $B D$ is its one diagonal
$\angle A B D+\angle D B C+\angle C B E=180^{\circ}$
(Angles on one side of a line)
$\Rightarrow 50^{\circ}+\mathrm{x}+70^{\circ}=180^{\circ}$
$x+120^{\circ}=180^{\circ}$
$\therefore \mathrm{x}=180^{\circ}-120^{\circ}=60^{\circ}$
But $y=x$ (Alternate angles)
$\therefore \mathrm{y}=60^{\circ}$
$z=70^{\circ}$ (Alternate angles)
$\therefore \mathrm{x}=60^{\circ}, \mathrm{y}=60^{\circ}, \mathrm{z}=70^{\circ}$ (a)
3. In the given figure, $A B C D$ is a rectangle, the value of angle x is
(a) 60°
(b) 90°
(c) 120°
(d) none of these

Solution:

In the given figure, $A B C D$ is a rectangle

$$
\begin{aligned}
& \therefore \angle O B A=\angle O A B=30^{\circ} \\
& \text { In } \triangle A O B, \\
& \angle A O B=\angle C O D \text { (Vertically opposite angles) } \\
& \angle A O B=x \\
& \angle A O B+\angle O B A+\angle O A B=180^{\circ} \text { (Angles of a triangle) } \\
& \Rightarrow x+30^{\circ}+30^{\circ}=180^{\circ} \\
& \Rightarrow x=180^{\circ}-30^{\circ}-30^{\circ}=120^{\circ} \\
& \therefore x=120^{\circ} \text { (c) }
\end{aligned}
$$

4. In a rhombus $A B C D$, the diagonals $A C$ and $B D$ are respectively 8 cm and 6 cm . The length of each side of the rhombus is
(a) 7 cm
(b) 5 cm
(c) 6 cm
(d) 8 cm

Solution:

In rhombus $A B C D$

Diagonals AC and BD are 8 cm and 6 cm

$\therefore A C=8 \mathrm{~cm}$ and $B D=6 \mathrm{~cm}$
\because Diagonals of a rhombus bisect each other at right angles

$$
\begin{aligned}
& A O=O C=\frac{8}{2}=4 \mathrm{~cm}, \\
& B O=O D=\frac{6}{2}=3 \mathrm{~cm}
\end{aligned}
$$

\therefore In right $\triangle A O B$
$\mathrm{AB}=\sqrt{\mathrm{AO}^{2}+\mathrm{BO}^{2}}=\sqrt{4^{2}+3^{2}}$
$=\sqrt{16+9}=\sqrt{25}=5 \mathrm{~cm}$
Each side of rhombus $=5 \mathrm{~cm}$ (b)
5. In the given figure, $A B C D$ is a square, the value of angle x is
(a) 30°
(b) 45°
(c) 60°
(d) not possible to find

Solution:

In the given figure,
$A B C D$ is a square whose diagonals $A C$ and $B D$
bisect each other at 0 .

\because Diagonals of a square bisect the opposite angles.
$\therefore \mathrm{x}=\frac{1}{2} \times \angle B=\frac{1}{2} \times 90^{\circ}=45^{\circ}($ b $)$
6. I In the given figure, $A B C D$ is a kite, the value of angle x is
(a) 86°
(b) 100°
(c) 104°
(d) none of these

Solution:

In the given figure, ABCD is a kite whose

diagonals AC and BD intersect at O at right angles.

$$
\begin{aligned}
& \text { In } \triangle O A B, \angle O=90^{\circ} \\
& \therefore \angle O A B+\angle A B O=90^{\circ} \\
& \Rightarrow \angle O A B+36^{\circ}=90^{\circ} \\
& \Rightarrow \angle O A B=90^{\circ}-36^{\circ}=54^{\circ} \\
& \text { But } \angle O A D=\angle O C D=50^{\circ} \\
& x=\angle D A O+\angle A O B \\
& \Rightarrow x=50^{\circ}+54^{\circ}=104^{\circ} \text { (c) }
\end{aligned}
$$

7. In the given figure, $A B C D$ is an isosceles trapezium. The values of x, y and z respectively are
(a) $110^{\circ}, 110^{\circ}, 70^{\circ}$
(b) $110^{\circ}, 70^{\circ}, 110^{\circ}$
(c) $70^{\circ}, 110^{\circ}, 110^{\circ}$
(d) none of these

Solution:

$$
\begin{aligned}
& \text { In isosceles trapezium } \angle A=70^{\circ} \\
& \text { But } \angle B=\angle A=70^{\circ} \Rightarrow z=70^{\circ} \\
& \text { But } x+70^{\circ}=180^{\circ} \\
& \Rightarrow x=180^{\circ}-70^{\circ}=110^{\circ} \\
& \text { But } y=x=110^{\circ} \\
& \therefore 110^{\circ}, 110^{\circ}, 70^{\circ} \text { (a) }
\end{aligned}
$$

8. In the given figure, the value of x is
(a) 120°
(b) 130°
(c) 140°
(d) 150°

Solution:
In the given figure,
Sum of angles of a quadrilateral $=360^{\circ}$

$$
\begin{aligned}
& \therefore 60^{\circ}+\left(180^{\circ}-120^{\circ}\right)+110^{\circ}+\mathrm{x}=360^{\circ} \\
& \Rightarrow 60^{\circ}+60^{\circ}+110^{\circ}+\mathrm{x}=360^{\circ} \\
& 230^{\circ}+\mathrm{x}=360^{\circ} \\
& \therefore \mathrm{x}=360^{\circ}-230^{\circ}=130^{\circ} \text { (b) }
\end{aligned}
$$

9. The lengths of two adjacent sides of a parallelogram are in the ratio $1: 2$. If the perimeter of a parallelogram is 60 cm , then the length of its sides are
(a) $6 \mathrm{~cm}, 12 \mathrm{~cm}$
(b) $8 \mathrm{~cm}, 16 \mathrm{~cm}$
(c) $9 \mathrm{~cm}, 18 \mathrm{~cm}$
(d) $10 \mathrm{~cm}, 20 \mathrm{~cm}$

Solution:
Ratio in the length of two adjacent sides of a parallelogram $=1: 2$
Perimeter $=60 \mathrm{~cm}$
\therefore Sum of two adjacent sides $=\frac{60}{2}=30 \mathrm{~cm}$
Let first side $=x$, then second side $=2 x$
$\therefore \mathrm{x}+2 \mathrm{x}=30 \Rightarrow 3 \mathrm{x}=30$
$x=\frac{30}{2}=10 \mathrm{~cm}$
First side $=10 \mathrm{~cm}$
and second side $=10 \times 2=20 \mathrm{~cm}$ (d)
10. In the given figure, the value of $x+y+z+w$ is
(a) 180°
(b) 270°
(c) 300°
(d) 360°

Solution:

In the given figure,

Sum of exterior angles of a quadrilateral $=360^{\circ}$

$$
\therefore x+y+z+w=360^{\circ}(d)
$$

11. The diagonal of a square bisects the interior angle in how many degree?
a) 45°
b) 90°
c) 75°
d) 30°

Solutio: a) by property
12.The adjacent angles of a parallelogram are 100° and 80°. One of the other angle is?
a) 60°
b) 70°
c) 100°
d) 50°

Solution:c) opposite angles are equal
14.The diagonals of which figure intersect at right angles?
a) kite
b)trapezium
c) isosceles trapezium
d) none of these

Solution: a) by property
15.One property of isosceles trapezium is
a) opposite angles are not equal
b) opposite angles are equal
c) diagonals are not equal
d) diagonals bisect

Solution: b) by property

