

ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION

<u>STUDY MATERIAL-6</u> SUBJECT – STATISTICS

Pre-test

Chapter: BIVARIATE ANALYSIS

Class: XII

Topic:CORRELATION FOR GROUPED DATA

Date: 08.06.2020

CORRELATION

PART 4

Suppose we are studying two variables x & y simultaneously. A statement of possible pairs of values assumed by x & y, together with the corresponding probabilities, is called bivatriate probability distribution or joint probability distribution.

Y	y 1	y ₂	γ ₃	y n	marginal prob
×					Of x _i
X ₁	p ₁₁	p ₁₂	p ₁₃	p_{1n}	p ₁₀
X ₂	p ₂₁	p ₂₂	p ₂₃	\mathbf{p}_{2n}	p ₂₀
X ₃	p ₃₁	p ₃₂	p ₃₃	p _{3n}	p ₃₀
X _m	p _{m1}	p _{m2}	p _{m3}	p _{mn}	p _{m0}
Marginal prob	P ₀₁	p ₀₂	p ₀₃	p _{0n}	1
of y_j					
·					

Where p_{ij} = joint probability of x_i and y_j

$$= P(X = x_i \cap Y = y_j)$$

The marginal probabilities are given by

Marginal probability of $X=x_i$, p_{io} = $\sum_j p_{ij}$

Marginal probability of $\,Y=y_{i\,,\,}\,p_{0j}$ = $\sum_i p_{ij}$

Some important formulae :

$$E(\varphi(X,Y)) = \sum_{i=1}^{m} \sum_{j=1}^{n} \varphi(x,y) p_{ij}$$

So from the above table,

$$E(X) = \sum_{i=1}^{m} x_i p_{i0} \text{ and } E(Y) = \sum_{j=1}^{n} y_j p_{oj}$$

$$E(X^2) = \sum_{i=1}^{m} x_i^2 p_{i0} \text{ and } E(Y^2) = \sum_{i=1}^{n} y_j^2 p_{0j}$$

$$E(XY) = \sum_{i=1}^{m} \sum_{i=1}^{n} x_i y_j p_{ij}$$

$$\sigma_X^2 = E(X^2) - (E(X))^2$$

$$\sigma_Y^2 = E(Y^2) - (E(Y))^2$$

$$cov(X,Y) = E(XY) - E(X)E(Y)$$

Correlation coefficient $\rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$ Regression equation y on x is $Y - E(Y) = \beta_{YX} (X - E(X))$ Regression coefficient y on x, $\beta_{YX} = \frac{cov(X,Y)}{\sigma_X^2} = \rho_{XY} \frac{\sigma_Y}{\sigma_X}$

Some impotant theorems and results :

$$E(X + Y) = E(X) + E(Y)$$

$$Pf: E(X + Y) = \sum_{i=1}^{m} \sum_{i=1}^{n} (x_i + y_j) p_{ij}$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} x_i p_{ij} + \sum_{i=1}^{m} \sum_{j=1}^{n} y_j p_{ij}$$

$$= \sum_{i=1}^{m} (x_i \sum_{j=1}^{n} p_{ij}) + \sum_{j=1}^{n} (y_j \sum_{i=1}^{m} p_{ij})$$

$$= \sum_{i=1}^{m} x_i p_{i0} + \sum_{j=1}^{n} y_j p_{0j}$$

$$= E(X) + E(Y)$$

→ If X and Y are two independent variables, then E(XY) = E(X).E(Y)

Pf: If X and Y are independent, then

$$P(X = x_i \cap Y = y_j) = P(X = x_i).P(Y = y_j)$$

$$\Rightarrow p_{ij} = p_{i0}.p_{0j}$$

So $E(XY) = \sum_{i=1}^{m} \sum_{i}^{n} x_i y_j p_{ij}$

$$= \sum_{i=1}^{m} \sum_{i}^{n} x_i y_j p_{i0} p_{0j}$$

$$= \sum_{i=1}^{m} (x_i p_{i0} \sum_{j=1}^{n} y_j p_{oj})$$

$$= \sum_{i=1}^{m} x_i p_{i0} E(Y)$$

$$= E(Y).E(X)$$

$$V(X_{1} + X_{2} + \dots + X_{n}) = E((X_{1} + X_{2} + \dots + X_{n}) - E(X_{1} + X_{2} + \dots + X_{n}))^{2}$$

$$= E(E(X_{1} - E(X_{1}))^{2} + E(X_{2} - E(X_{2})^{2} + \dots + E(X_{n} - E(X_{n})^{2}))$$

$$= \sum_{i=1}^{n} V(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=1}^{n} cov(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} V(X_{i}) + \sum_{i=1}^{n} \sum_{j=1}^{n} cov(X_{i}, X_{j})$$

$$i \neq j$$

It comes from the square formula. As it was told already that we get the formula for variance from

$$(\sum_{i=1}^{n} x_{i})^{2} = \sum_{i=1}^{n} x_{i}^{2} + 2 \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j}$$

$$i < j$$

$$= \sum_{i=1}^{n} x_{i}^{2} + \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j}$$

$$i \neq j$$

Prepared by Sanjay Bhattacharya