○。

ST. LAWRENCE HIGH SCHOOL
A Jesuit Christian minority Institution
Subject: Mathematics

Class- X
Date:07/05/2020
Study material- 4

Chapter- Right Circular cylinder

Topic- Surface area, volume of right circular solid cylinder and hollow cylinder

Right Circular Cylinder

A cylinder whose base is a circle is called circular cylinder. If the axis of the cylinder is perpendicular to its base then the cylinder is called a right circular cylinder.

Different formula related to a solid Right circular cylinder

Let radius of the base and height of a solid right circular cylinder be r unit and h unit respectively.
i)Lateral surface area= $2 \boldsymbol{\Pi r h}$ sq unit
ii) Area of 2 bases $=\mathbf{2} \boldsymbol{\Pi r}^{\mathbf{2}}$ sq unit
iii)Whole surface area $=\left(2 \Pi r h+2 \Pi r^{2}\right)$ sq unit
iv) Volume $=\Pi r^{2} h$ cubic unit

Right circular hollow cylinder

A right circular hollow cylinder (or cylindrical shell) is a three-dimensional region bounded by two right circular cylinders having the same axis and two parallel circular bases perpendicular to the cylinders' common axis, as in the diagram. Let the height be h, internal radius r, and external radius R.

Formula related to hollow right circular cylinder

i) Volume(solid part) = volume of external cylinder - volume of internal radius $=\Pi h\left(R^{2}-r^{2}\right)$ cubic unit
ii) Lateral surface area= External surface area + internal surface area= $2 \Pi R h+2 \Pi r h=2 \Pi h(R+r)$ sq unit
iii) Total surface area= Lateral surface area+ area of solid bases

$$
=\left[2 \Pi h(R+r)+2 \Pi\left(R^{2}-r^{2}\right)\right] \text { sq unit }
$$

SOLVED PROBLEMS

1) A solid, metallic, right circular cylindrical block of radius 7 cm and height 8 cm is melted and small cubes of edge 2 cm are made from it. How many such cubes can be made from the block?
Solution: For the right circular cylinder, we have radius (r) $=7 \mathrm{~cm}$, height (h) = 8 cm.

Therefore, its volume $=\pi r^{2} h$

$$
=(22 / 7 \times 7 \times 7 \times 8) \text { cubic cm }
$$

$$
=1232 \mathrm{~cm} 3
$$

The volume of a cube $=(\text { edge })^{3}$

$$
\begin{aligned}
& =2^{3} \text { cubic } \mathrm{cm} \\
& =8 \text { cubic } \mathrm{cm}
\end{aligned}
$$

Therefore, the number of cubes that can be made = volume of the cylinder/volume of a cube $=1232 / 8=154$ cubes can be made (ans)
2) The height of a cylindrical pillar is 15 m . The diameter of its base is $\mathbf{3 5 0} \mathbf{~ c m}$. What will be the cost of painting the curved surface of the pillar at Rs 25 per sq m?
Solution: Here, radius $=175 \mathrm{~cm}=1.75 \mathrm{~m}$ and height $=15 \mathrm{~m}$

Therefore, the curved surface area of the pillar $=2 \pi r h$

$$
\begin{aligned}
& =(2 \times 22 / 7 \times 1.75 \times 15) \mathrm{sq} \mathrm{~m} \\
& =165 \mathrm{sq} \mathrm{~m}
\end{aligned}
$$

Therefore, the cost of painting this area $=$ Rs $(25 \times 165)=$ Rs 4125. (ans)
3)A hollow right circular cylinder has 5 cm external radius, 4 cm internal radius and $1188 \mathbf{s q ~ c m}$ total surface area. aehat is the height of the cylinder?

Solution: According to the problem
$2 h \Pi(5+4)+2 \Pi\left(5^{2}-4^{2}\right)=1188$
Or, 22/7 (9h+9)=1188
Or, $9 \mathrm{~h}+9=1188 \times 7 / 22$
Or, 9h= 189-9
Or, $\mathrm{h}=180 / 9=20 \mathrm{~cm}$ (ans)
4)A hollow right circular cylinder has 16 cm external diameter and 12 cm internal diameter. Height of the cylinder is 36 cm . After melting it few solid right circular cylinders with 2 cm diameter and 6 cm height are made. Find the numbers of solid cylinders can be made.

Solution: external radius $=\mathbf{8 c m}$, Internal radius $=\mathbf{6 c m}$, height= $\mathbf{3 6} \mathbf{~ c m}$
Volume of the hollow cylinder $=\Pi\left(8^{2}-6^{2}\right) 36=1008$ cubic $\mathbf{~ c m}$
Radius of solid cylinder $=1 \mathrm{~cm}$, height $=\mathbf{6 c m}$

Volume of one solid cylinder= $\left[\Pi(1)^{2} \mathrm{x} 6\right]$ cubic $\mathrm{cm}=6 \Pi$ cubic cm
Number of solid cylinders $=1008 \Pi / 6 \Pi=168$ (ans)
5)Height of a right circular cylinder is twice of its radius. If height was 6 times the radius then volume would heve been 539 cubic dcm more. Find height of the cylinder.

Solution: Let the original height is 2 r dcm when radius is r dcm
Original volume $=\Pi r^{2} h=\left(\Pi r^{2} X 2 r\right)$ cubic dem
New height is 6 r dcm when radius is r dcm
New volume $=\left(\Pi r^{2} X 6 r\right)$ cubic dcm
According to the problem
($\left.\mathrm{Hr}^{2} \mathbf{X} 6 \mathrm{r}\right)-\left(\mathrm{\Pi r}^{2} \mathrm{X} 2 r\right)=539$
Or, $r^{3}=539 \times 7 / 22 \times 1 / 4$
Or, $\mathrm{r}^{3}=\frac{7 x 7 x 7}{2 x 2 \times 2}$ therefore $\mathrm{r}=7 / 2 \mathrm{~cm}=3.5 \mathrm{dcm}$
Height $=(3.5 \mathrm{x} 2) \mathrm{dcm}=7 \mathrm{~d} \mathrm{~cm}$ (ans)
6) Lateral surface area of a right circular cylindrical pillar is 264 sq m and volume is 924 cubic \mathbf{m}. Find diameter and height of the pillar.

Solution: let radius and height of the pillar be r unit and h unit respectively
Volume $=\Pi r^{2} h=924$ cubic $\mathbf{m} . .$. i)
Lateral surface area $=2 \Pi r h=264$ sq m....ii)
Dividing equation (i) by equation (ii) we get
$\Pi r^{2} h / 2 \Pi r h=924 / 264$
Or, r/2 = 924/ 264
$0 r, r=7 \mathrm{~cm} \quad$ therefore diameter is $(7 x 2)=14 \mathrm{~m}$
putting r=7 in equation (ii) we get
$2 \Pi \times 7 \times h=264$
Or, h=6 m (ans)

