

SOLUTION OF WORKSHEET-20

SUBJECT - STATISTICS

Term : 1st

Topic – Dispersion Full Marks: 15

Class: XI Date:27 .07. 2020

- Q1. Select the correct alternative of the following questions.
 - (i) The marks of 5 students in a class test are 1, 2, 4, 7, 8, 11. The mean deviation about mean is
 (a) 2
 (b)4
 (c)8
 (d) none of these
 - (ii) The mean deviation about mean is used to calculate the average of(a) all values (b) observation in GP (c) observation in AP (d) none of these
 - (iii) The marks of 5 students in a class test are 2, 4, 4, 7, 7, 8, 23. The mean deviation about mean is
 - (a) 2 (b)4 (c)11 (d) none of these
 - (iv) If all the Observation is equal to $-\frac{1}{7}$, then the mean deviation about mean is equal to
 - (a) 1 (b) $\frac{1}{5}$ (c)-5 (d) none of these

(v) Mean deviation about mean is -(2n+3),, -1, 0, 1, ..., , (2n-1) is (a) -1 (b) 0 (c) $\frac{n-1}{2}$ (d) none of these

(vi) Mean deviation about mean of religion of several people (a)n-1 (b) 0 (c) $\frac{n-1}{2}$ (d) none of these

(vii)	The mean deviation about mean can alway observation (a) countably infinite (c) uncountably finite			ys be calculated of a set having (b) uncountably infinite (d) none of these
(viii)	If 5x=9y and (a) 0	mean deviatior (b)1	n about mean (c)0. 5	is of x is 7, then range of y is (d) none of these
(ix)	The combined mean deviation about mean depends upon the (a) 1 st set (b) 2 nd set (c) both (d)none of these			
(x)	The mean deviation is minimum when taken about(a) mean(b) median(c) mode(d) none of these			
(xi)	The combined mean deviation is greater than the geometric mean of the given sets which is (a) maximum (b) minimum (c) both (d) none of these			
(xii)	The sum of differences of mean deviation about median from to all the observations except one value is (a) -1 (b) 1 (c) 0 (d) none of these			
(xiii)	Theres are 10 observations with range 3. If 0.3 is added to all the observationsthen the mean deviation about mode of the new set is(a) -30(b) 10(c) 30(d) none of these			
(xiv)	There are 10 observations with range 4. If all the observations be added by 4 thenthe mean deviation about mode of the new set is(a)0(b) 2(c) 4(d) none of these			
(xv)	The suitable shoe size to be stocked in the shoe shop is determined by the measure (a) Mode (b) Mean deviation (c) Range (d) none of these			

Prepared by Sanjay Bhattacharya