

# ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION



# STUDY MATERIAL-20 SUBJECT - MATHEMATICS

**Pre-Test** 

Chapter: Integration Class: XII

Topic: Integration By Parts Date: 01.07.2020

-: Integration By Parts:-

# The working rule:-

If F and G are two functions of x, then integral of the product of these two functions is given by

$$\int F \cdot G \, dx = F \int G \, dx - \int \left( \frac{dF}{dx} \int G \, dx \right) dx$$

Or we can say that the integral of the product of two functions = (First function)  $\times$  (Integral of second function) – Integral of {(Differentiation of first function)  $\times$  (Integral of second function)}.

- **✓** The easily integrable function in most cases is chosen as the second function.
- However we can follow the "LIATE" rule to choose the 1<sup>st</sup> and the 2<sup>nd</sup> function. The function which comes first in the following list could be taken as the first function.
  - L Logarithmic functions.
  - I Inverse trigonometric functions.
  - A Algebraic functions.
  - T Trigonometric functions.
  - E Exponential functions.

### **4**Solved Examples :-

Example 1. Evaluate  $\int x \cdot \sin x \, dx$ .

#### **Solution:**

$$I = \int x \cdot \sin x \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x + c$$

Example 2. Evaluate  $\int x \sec^2 x \, dx$ .

#### **Solution:**

$$I = \int x \sec^2 x \, dx = x \tan x - \int \tan x \, dx = x \tan x + \ln \cos x + c$$

Example 3. Evaluate  $\int x^3 \ln x \, dx$ .

#### **Solution:**

$$I = \int x^{3} \ln x \, dx = \frac{x^{4}}{4} \cdot \ln x - \int \frac{x^{4}}{4} \cdot \frac{1}{x} dx$$
$$= \frac{x^{4}}{4} \cdot \ln x - \frac{x^{4}}{16} + c$$

Example 4. Evaluate  $\int (f(x)g''(x) - g(x)f''(x))dx$ .

#### **Solution:**

$$I = \int [(f(x)g''(x) - g(x)f''(x))] dx = \int f(x)g''(x)dx - \int g(x)f''(x)dx$$

$$I = [f(x)g'(x) - \int f'(x)g'(x)dx] - [g(x)f'(x) - \int f'(x)g'(x)dx]$$

$$= f(x)g'(x) - g(x)f'(x)$$

### Example 5. Evaluate $\int \sec^3 \theta \, d\theta$ .

#### **Solution:**

$$I = \int \sec^{3}\theta \ d\theta = \sec\theta \int \sec^{2}\theta \ d\theta - \int \tan\theta (\sec\theta \tan\theta) \ d\theta$$

$$= \sec\theta \cdot \tan\theta - \int \sec\theta (\sec^{2}\theta - 1) \ d\theta$$

$$= \sec\theta \cdot \tan\theta - \int \sec^{3}\theta \ d\theta + \int \sec\theta \ d\theta$$

$$\Rightarrow I = \sec\theta \cdot \tan\theta - I + \int \sec\theta \ d\theta$$

$$\Rightarrow I = \frac{1}{2} [\sec\theta \cdot \tan\theta] + \frac{1}{2} \ln|\sec\theta + \tan\theta| + c$$

Example 6. Evaluate 
$$\int \frac{x^2 dx}{(x \sin x + \cos x)^2}$$
.

#### **Solution:**

$$I = \int \frac{x^2}{(x \sin x + \cos x)^2} dx = \int \frac{x \cos x}{(x \sin x + \cos x)^2} \cdot \frac{x}{\cos x} dx$$

$$I = \frac{-1}{(x \sin x + \cos x)} \cdot \frac{x}{\cos x} + \int \frac{1}{(x \sin x + \cos x)} \cdot \frac{\cos x + x \sin x}{\cos^2 x} dx$$

$$I = \frac{-1}{(x \sin x + \cos x)} \cdot \frac{x}{\cos x} + \int \sec^2 x dx$$

$$I = \frac{-1}{(x \sin x + \cos x)} \cdot \frac{x}{\cos x} + \tan x + c$$

## Example 7. Evaluate $\int \sqrt{x^2 + a^2} dx$ .

#### **Solution:**

$$I = \int \sqrt{x^2 + a^2} \, dx = \sqrt{x^2 + a^2} \int 1 dx - \int \frac{2x^2}{2\sqrt{x^2 + a^2}} \, dx$$

$$= x\sqrt{x^2 + a^2} - \int \frac{x^2 + a^2}{\sqrt{x^2 + a^2}} \, dx + \int \frac{a^2}{\sqrt{x^2 + a^2}} \, dx$$

$$\Rightarrow I = x\sqrt{x^2 + a^2} - I + a^2 \ln \left| x + \sqrt{x^2 + a^2} \right| + c$$

$$\Rightarrow 2I = x\sqrt{x^2 + a^2} + a^2 \ln \left| x + \sqrt{x^2 + a^2} \right| + c$$

$$\Rightarrow I = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln \left| x + \sqrt{x^2 + a^2} \right| + c$$

- Prepared by

Mr. Sukumar Mandal (SkM)